

RESEARCH PAPER

5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, *Hoplobatrachus tigerinus*

Sharique A Ali, Saima Salim, Tarandeep Sahni, Jaya Peter and Ayesha S Ali

Department of Biotechnology, Saifia College of Science, Bhopal, India

Correspondence

Dr Sharique A. Ali, Department of Biotechnology, Saifia College of Science, Bhopal 462001, India. E-mail: drshariqueali@yahoo.co.in

Keywords

serotonin; 5-hydroxytryptamine receptors; pigmentation; melanophores

Received

13 January 2011

Revised

26 June 2011

Accepted

31 July 2011

BACKGROUND AND PURPOSE

Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance.

EXPERIMENTAL APPROACH

Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. *In vitro* responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells.

KEY RESULTS

5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1×10^{-6} g·mL⁻¹. Specific 5-HT₁ and 5-HT₂ receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT₃ and 5-HT₄ receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT.

CONCLUSIONS AND IMPLICATIONS

The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian.

Abbreviations

1,3 CPB, 1 (3 chlorophenyl) biguanide; 5-MT, 5-methoxy tryptamine; ARS, amphibian ringer saline; MMSI, Mean Melanophores Size Index; NAS, N-acetyl-5-HT

Introduction

5-HT (serotonin) is one of the primary monoamine neurotransmitters in the CNS. The release of 5-HT is modulated by 5-HT receptors, which are located on various nerve terminals of the central and peripheral nervous systems (Julius, 1991; Göthert et al., 1995). The fundamental advancement towards understanding the physiology of neurotransmitters acting on transmembrane receptors in numerous effector cells has radically reconditioned our concept of down-stream signalling pathways that occur within the cells. Interestingly, it has been reported that frog skin contains various biologically active compounds such as biogenic amines, neurotransmitters and neuropeptides (Erspamer, 1992). Also, neuropeptides detected in frog skin have led investigators to elucidate their mammalian counterparts (Tatemoto et al., 1982). 5-HT is one of the compounds detected in frog skin (Bennett et al., 1982; Roseghini et al., 1988; 1989). It stimulates smooth muscle contraction (Ross et al., 1995) and also functions as an important modulator and transmitter in vertebrate nervous system (Dicke et al., 1997). It is also suggested that 5-HT plays a role in self-defence as well as in colour change and water exchange in frog skin (Kramer, 1970; Lillywhite, 1971; Bennett et al., 1981).

A well-established physiological action of 5-HT takes place in the dermal layer of the skin. Here, cells called melanophores, which contain the pigment melanin respond to neuronal stimuli by initiating a rapid, reversible translocation of pigment granules (melanosomes) within the cell cytoplasm. Dispersion of melanosomes throughout the cell or their aggregation in a perinuclear position results in dramatic colour changes which are important for courtship, camouflage, selfdefence, thermoregulation and photo protection (Rollag and Adelman, 1992; Fujii, 1993). This bidirectional translocation of pigment to the centre (aggregation) or towards the periphery (dispersion) gives the corresponding lighter or darker hue respectively. It is known that melanophores of lower vertebrates especially amphibians and fishes are highly sensitive in their responses to external cues, which makes them an excellent model tissue for studying the effect of compounds and their implications (Gele and Lambert, 2011).

The role of 5-HT in bringing about a discernible pigmentary response has been revealed by the presence of 5-HT receptors on pigment cells, melanophores (Potenza and Lerner, 1994). Despite their detection on melanophores, there are very few, yet conflicting reports regarding the putative role of 5-HT receptors in controlling pigmentary responses within these cells. As early as 1957, Kahr and Fischer had found that 5-HT was incapable of causing any response in black background-adapted Rana temporaria, but it did induce pigment dispersion in normal white- background adapted frogs (Kahr and Fischer, 1957). 5-HT has been reported to cause dispersion in the melanophores of the hypophysectomized frog, Rana pipiens (Davey, 1959). Later, this was confirmed by Vande Veerdonk (1960) on Xenopus laevis. In contrast, Lerner and Case (1960) demonstrated a concentrating effect of 5-HT on the melanophores of R. pipiens and it has recently been reported that 5-HT causes a concentration-dependent dispersion as well as aggregation in X. laevis (Teh and Sugden, 2001).

5-HT exerts its pleiotropic function by interacting with specific G-protein cell surface membrane-bound receptor families (Peroutka, 1990; Hoyer *et al.*, 2002; Bockaert *et al.*, 2006). The physiological activities of these receptors on the effector/target cells differ, depending upon the signalling pathway downstream to them. For instance, 5-HT₄ and 5-HT₇ stimulate the activity of adenylyl cyclase, thereby increasing the levels of cAMP (Branchek, 1995). Conversely, 5-HT₁ attenuates the activity of adenylyl cyclase, resulting in a decrease in cAMP. On the other hand, 5-HT₂ receptors enhance the activity of phosphoinositol hydrolases and 5-HT₃ functions as a ligand-gated ion channel (Maricq *et al.*, 1991; Bohlen and Dermietzel, 2002).

The relationship between pigmentary function and 5-HT receptor type is complex. Detection of 5-HT_{1A}, 5-HT_{1B}, 5-HT_{2B} and 5-HT₇ receptors on mammalian melanocytes and dermal fibroblasts is consistent with a putative function for 5-HT as a growth factor (Seuwen and Pouyssegur, 1990). 5-HT stimulates proliferation of melanocytes in a medium deprived of growth factors, while it inhibits cell growth in the presence of growth factors (Slominski *et al.*, 2003c). However, the direct involvement of 5-HT receptors in pigment generation in melanocytes is still obscure and needs to be investigated.

As melanin-based pigmentation biology as well as the 5-HT embryogenic and morphogenic functions are conserved across lower to higher vertebrates (Goodrich et al., 1980; Slominski et al., 2004), a deeper understanding of the physiology of lower vertebrates translates easily and directly into testable hypotheses for studying the cellular basis of pigmentation variation in natural vertebrate cell systems including humans. It is now known that the 5-hydroxytryptaminergic system is fully expressed in various vertebral systems including human skin (Johansson et al., 1998; Slominski et al., 2002b, 2003b, 2005), and the first experimental evidence that 5-HT is synthesized in skin cells was obtained in hamster skin (Slominski et al., 2002a). Interestingly, the tryptophan hydroxylase gene (TRH 1) that catalyzes the synthesis of 5-HT is expressed in whole human skin cells (Slominski et al., 2003a). Furthermore, there is a dearth of evidence that the skin has molecular and biochemical apparatus to produce and metabolize 5-HT and N-acetyl-5-HT (Slominski et al., 2002c, 2003a). Although 5-HT receptors are reported to be present in an array of skin cells across animal species, their explicit role in the process of skin pigmentation is still unclear (Slominski et al., 2004). Also, looking at the variable and fragmentary reports in literature, our present study was undertaken to characterize the presence of recently classified novel 5-HT receptors and their putative role in the pigmentary responses within the melanophores of commonly found amphibian, Hoplobatrachus tigerinus (synonym, Rana tigerina), which offers an excellent system for in vitro pharmacological studies. This investigation would definitely be a considerable step towards bridging the gaps in our understanding of the properties of the 5-hydroxytryptaminergic system and its role in pigmentation biology together with its evolutionary significance.

Methods

Studies were performed on the isolated dorsal skin melanophores of *H. tigerinus* (syn. R. tigerina) weighing 100–125 g.

Adult frogs were acquired legally from an authorized dealer following the legislation of the country where the study was conducted, and no damage was caused to the environment or wild animal populations. The animals were kept in a laboratory froggery for 3–4 days with a 12 h light-dark phase and temperature maintained between 20 and 25°C. A mud substratum was built at the base of the tank, which was kept wet. The tank was covered with a wire mesh that had provision for withdrawing and introducing frogs. Food, temperature, humidity and sanitation were taken care of properly. Overfeeding was avoided and any animals with signs of disease or lethargy were left out. Suitable care was taken to minimize any causes of stress to the animals.

The ethical committee for Animal Examination and Research, Saifia College of Science, Bhopal, India, certified the use of animal experimentation and handling. The research was done under strict compliance with the guidelines of Indian Council of Medical Research, Guidelines for Use of Laboratory Animals in Medical Colleges (2001) as per Breeding and Experiments of Animal Amendments Rules (2001) and Prevention of Cruelty to Animal Act (1966).

Preparation of dorsal skin pieces for in vitro studies

For experimentation, the animals were carefully decapitated and the dorsal skin pieces measuring approximately 2–3 mm were removed and immediately immersed in amphibian ringer saline (ARS); 111 mM of sodium chloride, potassium chloride 2 mM, calcium chloride 1 mM and sodium hydroxide 2 mM; in 100 mL of double distilled water with pH 7.4. The skin pieces were incubated in ARS for 15–20 min for equilibration with frequent shakings. The temperature of the experimental setup remained between 20 and 25°C. After 20 min of equilibration in the ARS, the skin pieces containing approximately 50–100 melanophores were incubated with known concentrations of drugs for 7–10 min. All drugs were dissolved freshly in doubled distilled water and their solutions were added to the Petri dishes containing the ARS, the total volume of which was kept constant (10 mL).

The responses of control as well as of those melanophores that were incubated in 10 mL ARS containing various concentrations of receptor-specific agonists were measured according to the method used by Bhattacharya $et\ al.$ (1976) based on the Hogben and Slome (1931) Melanophore Index. In this method, the individual melanophores were measured with the help of Leitz ocular micrometer calibrated by a stage micrometer, by marking the maximum vertical and horizontal diameters. Ten such randomly selected melanophores from each skin piece were measured and the Mean Melanophore Size Index (MMSI) was calculated. When the melanophores disperse, that is, the melanin pigment granules within the melanophores move to the periphery, the diameter of the cells increases and $vice\ versa$. The calculated value is the MMSI, expressed in terms of μm .

Drugs

5-HT hydrochloride (≥99% HPLC solid) and 1-(3- chlorophenyl) biguanide hydrochloride (≥97% solid) were purchased from AlphaAesar (Karlsruhe, Germany); sumatriptan succinate (≥98% HPLC solid) was purchased from Sun Pharma-

ceuticals India Ltd. (Mumbai, India); yohimbine hydrochloride (\geq 98% TLC) was purchased from HiMedia Laboratories, (Mumbai, India); myristicin (>99.5% clear liquid) from parsley oil, was obtained from MP Biomedicals LLC (USA); metergoline (\geq 98% HPLC solid), mirtazapine (\geq 98% HPLC solid), trazodone hydrochloride (\geq 99% HPLC powder), ondansetron hydrochloride dihydrate (\geq 98% HPLC solid), 5-methoxy tryptamine (5-MT; \geq 97%) and L-lysine (\geq 98% TLC) were purchased from Sigma-Aldrich (USA); L-adrenaline bitartrate (\geq 98% solid) was purchased from C.H. Boehringer Sohn AG & Co. KG (Ingelheim, Germany).

Control

The control position was established by pretreating the melanophores with a known concentration of adrenaline $(2 \times 10^{-8} \, \text{g} \cdot \text{mL}^{-1})$. This value was determined by treating the melanophores with varying concentrations of adrenaline. Adrenaline has been reported to cause the melanophores to aggregate (Borisky and Rodionov, 1999). Therefore, a dose was selected where the melanophores were brought to an intermediate stage of neither aggregation nor dispersion as per the modified method of Ali $et\ al.\ (1998)$. This facilitated the accurate measurement of the dispersal responses to 5-HT as well as the other agonists.

Employment of 5-HT receptor agonists

To investigate the pharmacological characteristics of 5-HT receptors on melanophores, various specific agonists were tested for their ability to initiate pigment mobility (Table 1). The analysis of data reveals several points of interest. The agonists selected were highly specific for their respective active site whereas they also possess varying abilities to activate a wide range of subtypes of the receptor.

Employment of 5-HT receptor antagonists

To characterize further the pharmacology of the 5-HT receptor system in the skin melanophores, and to confirm the presence of 5-HT receptors, various antagonists were tested for their ability to inhibit the agonist-induced effect (Table 1). Antagonists acting at 5-HT₁₋₄ receptors with individual as well as synergistic antagonistic effects were investigated. Individual effects of the drugs were tested on the pigment motility of *H. tigerinus* (summarized in Table 1).

The antagonist was applied to the incubating media before addition of the agonist. The final concentration of the antagonist was selected from a series of dose-dependent pre-incubated pilot experiments, with the dose ranging from $1\times 10^{-7}~\rm g\cdot mL^{-1}$ to $6.4\times 10^{-5}~\rm g\cdot mL^{-1}$. The concentration of antagonist that was found to have no effect on the melanophore responses on its own was finally selected as the dose to use in the antagonist experiments.

Statistical data analysis

Statistical data analyses are presented as mean \pm SEM (represented by vertical bars) and n represents the number of dose concentrations (treated) used for a particular experiment. Comparisons were made between treated and control groups by use of Student's t-test. All data were analysed using GraphPad Prism software (UK). P < 0.05 indicates statistically significant difference.

Table 1

Summary of the pharmacology and effects of drugs used in this study on melanin dispersion within the melanophores of Hoplobatrachus tigerinus

Drug	Pharmacology	Receptor efficacy	Effect on melanin dispersion
5-HT hydrochloride	Stimulation of 5-HT receptor	Non-selective endogenous agonist at 5-HT receptors	+
Sumatriptan succinate	Stimulation of 5-HT ₁ receptor	Highly potent/selective 5-HT ₁ agonist	+
Myristicin or methoxysafrole	Stimulation of 5-HT ₂ receptor	Selective 5-HT ₂ agonist	+
1, 3 CPB	Stimulation of 5-HT ₃ receptor	Highly potent/selective 5-HT ₃ agonist	_
5-MT	Stimulation of 5-HT ₄ receptor	Full 5-HT₄ agonist	_
Yohimbine	Blockage of 5-HT ₁ and 5-HT ₂ receptors	Potent 5-HT ₁ antagonist	_
Metergoline	Blockage of 5-HT ₁ receptor	5-HT ₁ and 5-HT ₂ antagonist	+
Trazodone	Blockage of 5-HT ₂ receptor	Potent 5-HT ₂ antagonist	_
Mirtazapine	Blockage of 5-HT ₂ receptor	Potent 5-HT ₂ antagonist	+
Ondansetron	Blockage of 5-HT₃ receptor	Highly potent/selective 5-HT₃ antagonist	None
L-lysine	Blockage of 5-HT ₄ receptor	Partial antagonist at 5-HT ₄	None

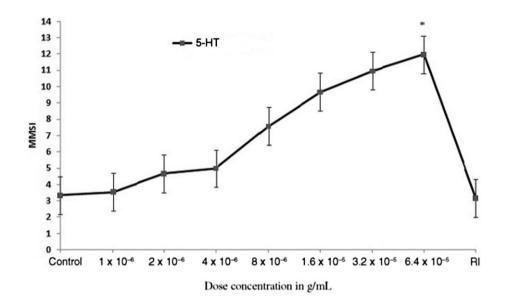


Figure 1

Dose-response curve for 5-HT on the dorsal skin melanophores of *Hoplobatrachus tigerinus* shown by (■) closed squares. Vertical bars indicate SEM. *P* < 0.0001 signifies level of significance.

Results

5-HT induces pigment dispersion in melanophores of H.tigerinus

It was found that 5-HT induced pigment dispersion in a dose-dependent manner. The minimum threshold concentration of 5-HT that could bring about a discernible response in melanophores was $1\times 10^{-6}~\rm g\cdot mL^{-1}$, where the MMSI increased to 3.55 \pm 0.04 from the control value of 3.04 \pm 0.49. The effect followed a dose-dependent curve with the maximum degree of dispersion recorded at 6.4 \times

 $10^{-5}~g\cdot mL^{-1},$ with the MMSI at 11.96 ± 0.20 (Figures 1 and 2). The dispersing effect of 5-HT was challenged with a combination of antagonists. The 5-HT $_1$ antagonist yohimbine $(2\times10^{-7}~g\cdot mL^{-1})$ could not completely block the effect of 5-HT with the highest dispersion peak at $6.4\times10^{-5}~g\cdot mL^{-1},$ with MMSI 7.55 \pm 0.34. Thereafter, a combination of 5-HT $_1$ antagonists' yohimbine $(2\times10^{-7}~g\cdot mL^{-1})$ and metergoline $(4\times10^{-6}~g\cdot mL^{-1})$ was employed. The synergistic blocking effect of the two drugs could completely attenuate the dispersion caused by 5-HT where the MMSI recorded at highest dose concentration of 5-HT was found to be 5.87 \pm 0.12 (Figure 3).

In another set of experiments, 5-HT was challenged with the 5-HT₂ antagonist trazodone. It was found that trazodone did bring about a slight attenuation in the 5-HT response, with the MMSI at highest concentration to be 8.98 \pm 0.32. Thereafter, a combination of trazodone (2 \times 10⁻⁷ g·mL⁻¹) and mirtazapine (4 \times 10⁻⁶ g·mL⁻¹) was employed to challenge the dispersion caused by 5-HT. It was found that the synergistic blockage of the two antagonists potentiated the 5-HT

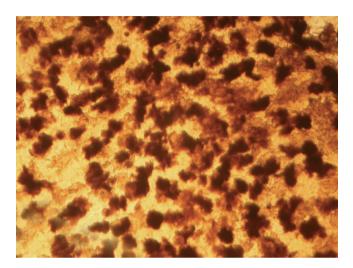


Figure 2 Dispersion caused by 5-HT $6.4 \times 10^{-5} \text{ g} \cdot \text{mL}^{-1}$.

response and the MMSI increased to 9.59 ± 0.29 . This finding indicated the presence of both 5-HT_1 and 5-HT_2 receptors with 5-HT_1 being the predominant receptor type. Also, the affinity of 5-HT seems to be higher for 5-HT_1 receptors (Figure 3).

5-HT₁ receptors

The potent and selective 5-HT₁ receptor agonist sumatriptan succinate caused dispersion in the melanophores in a dosedependent manner. Sumatriptan at a concentration as low as 1 × 10⁻⁷ g⋅mL⁻¹ produced a measurable response that was evident from the increase in MMSI 5.20 \pm 0.13 in comparison with the control MMSI 3.53 \pm 0.18. The maximum effect was observed at $6.4 \times 10^{-6} \, \text{g} \cdot \text{mL}^{-1}$ where the MMSI increased to 13.48 ± 0.21 . A comparative analysis of the effects of nonspecific 5-HT per se and sumatriptan on melanophores revealed that sumatriptan caused a higher degree of dispersion than 5-HT (Figure 4). This finding indicated the presence of dominant 5-HT₁ receptors in the melanophores of *H. tigeri*nus. To confirm this finding, the drug yohimbine was utilized, which is an antagonist at the 5-HT₁ receptor. Melanophores pre-treated with yohimbine $2 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1}$ and subsequently subjected to sumatriptan, reduced the MMSI response to 6.78 \pm 0.16, at highest dose of sumatriptan (6.4 \times 10⁻⁶ g·mL⁻¹). Thereafter, the effects of metergoline $(4 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1})$ were tested; metergoline attenuated the dispersion induced by the highest concentration of sumatriptan, with the MMSI reduced to 5.99 ± 0.13 . Furthermore, the combination of yohimbine $(2 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1})$ and metergoline $(4 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1})$ effectively and completely block the dispersion caused by

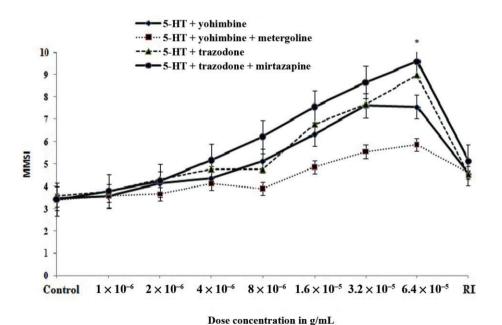


Figure 3

Dose-response curves depicting the dispersal effect caused by 5-HT being challenged by a combination of antagonists on the dorsal skin melanophores of *Hoplobatrachus tigerinus*. The blocking effect of yohimbine $(2 \times 10^{-7} \, g \cdot mL^{-1})$ is shown plus the synergistic blockage by the combination of yohimbine $(2 \times 10^{-7} \, g \cdot mL^{-1})$ and metergoline $(4 \times 10^{-6} \, g \cdot mL^{-1})$. The inhibition of 5-HT-induced dispersion by trazodone $(2 \times 10^{-7} \, g \cdot mL^{-1})$ is shown plus the synergistic blockage effect of the combination of trazodone $(2 \times 10^{-7} \, g \cdot mL^{-1})$ and mirtazapine $(4 \times 10^{-6} \, g \cdot mL^{-1})$. Vertical bars represent SEM. *P < 0.0002 signifies level of significance.

sumatriptan, with MMSI (4.68 \pm 0.14) confirming the presence of 5-HT₁ receptors (Figure 5).

5-HT₂ receptors

The 5-HT₂ receptor agonist myristicin was found to cause a weak dispersion in the melanophores in a dose-dependent manner. The concentrations in low range in the doseresponse curve had little effect, with an MMSI of 5.59 ± 0.24 at 4×10^{-7} g·mL⁻¹, with a slight increment from the control value 3.98 ± 0.17 (Figure 6). However, at a higher dose range,

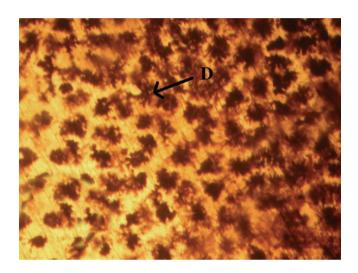
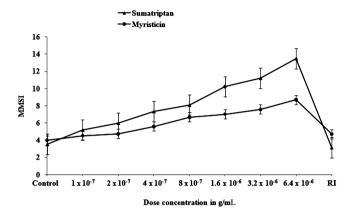



Figure 4 Dispersion caused by sumatriptan $6.4 \times 10^{-6} \text{ g} \cdot \text{mL}^{-1}$. D, dispersion.

that is, above $1\times10^{-6}~\rm g\cdot mL^{-1}$ to $6.4\times10^{-5}~\rm g\cdot mL^{-1}$, there was a marked increase in dispersion with the MMSI 9.79 \pm 0.15 with P<0.0001 (Figures 7 and 8). The presence of the 5-HT₂ receptor was confirmed by antagonizing the dispersion caused by myristicin with trazodone ($2\times10^{-7}~\rm g\cdot mL^{-1}$), which is a potent 5-HT₂ receptor antagonist; trazodone did not completely block the effect of myristicin. In another series of

Figure 6

Dose-response curves for the effects of the 5-HT $_1$ selective agonist sumatriptan and the 5-HT $_2$ agonist myristicin on the dorsal skin melanophores of *Hoplobatrachus tigerinus*. Vertical bars represent SEM. Note that within the dose range $1\times 10^{-7}~\rm g\cdot mL^{-1}$ to $6.4\times 10^{-6}~\rm g\cdot mL^{-1}$ myristicin caused little dispersion, whereas the same dose range resulted in a substantial response to the specific agonist sumatriptan. P<0.0001 signifies level of significance.

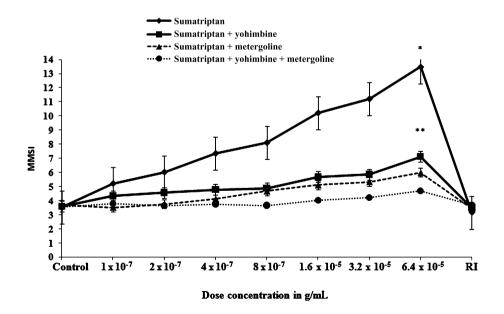


Figure 5

Dose-response curve for the effect of sumatriptan on the dorsal skin melanophore of *Hoplobatrachus tigerinus*. The inhibitory effect of yohimbine $(2 \times 10^{-7} \text{ g·mL}^{-1})$ and metergoline $(4 \times 10^{-7} \text{ g·mL}^{-1})$ alone are shown plus the combined effect of yohimbine $(2 \times 10^{-7} \text{ g·mL}^{-1})$ and metergoline $(4 \times 10^{-7} \text{ g·mL}^{-1})$, which induced complete synergistic blockage of the dispersion induced by sumatriptan. Vertical bars represent SEM. *P < 0.0001 and **P < 0.0002 signify level of significance.

experiments, the melanophore preparation was pretreated with a combination of trazodone and yohimbine, 2 \times $10^{-7}\,\mathrm{g\cdot mL^{-1}}$ and $4\times10^{-7}\,\mathrm{g\cdot mL^{-1}}$, respectively; the combination of these two antagonists produced a synergistic blocking effect of myristicin response with MMSI 4.75 \pm 0.12 (Figure 8). The dose-response curve for myristicin *per se* revealed that the degree of dispersion was less than that induced with sumatriptan, which indicates the dominance of 5-HT₁ receptors (Figure 6).

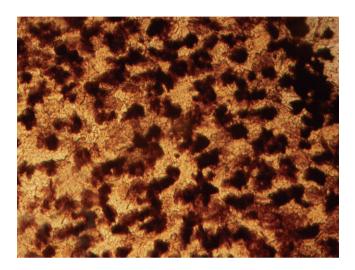


Figure 7 Dispersion caused by myristicin $6.4 \times 10^{-5} \text{ g} \cdot \text{mL}^{-1}$.

5-HT₃ receptors

The potent and selective 5-HT₃ receptor agonist 1-(3-chlorophenyl) biguanide was employed to confirm the presence of 5-HT₃ receptors in the melanophores. The response was weak and barely detectable at a dose of $1\times 10^{-8}~\rm g\cdot mL^{-1}$, with an of MMSI 4.11 \pm 0.07. Further increasing the doses on a logarithmic scale produced a dose-dependent curve. The maximum concentration (6.4 \times 10⁻⁵ g·mL⁻¹) of 1 (3 chlorophenyl) biguanide (1,3 CPB) produced an intense aggregation of all the melanophores (*P* < 0.001) (Figures 9 and 10), with the MMSI reduced to 1.15 \pm 0.40. Further increasing the dose 1,3 CPB did not produce any measurable change in the response.

To further investigate the possible involvement of 5-HT $_3$ receptors in this aggregating response, the specific antagonist ondansetron was used. Ondansetron $4\times 10^{-7}\,\mathrm{g\cdot mL^{-1}}$ completely blocked the aggregation effect caused by 1,3 CPB. This blockage persisted on increasing the concentration of 1,3 CPB, and even at the highest dose of $6.4\times 10^{-5}\,\mathrm{g\cdot mL^{-1}}$, 1,3 CPB produced no observable aggregation; the MMSI recorded was 3.93 ± 0.21 . This finding further confirmed the presence of 5-HT $_3$ receptors in the melanophores of *H. tigerinus* (Figure 12).

5-HT₄ receptors

5-Methoxytryptamine, which is a potent agonist at 5-HT₄ receptors, was tested and it was found to cause pigment aggregation in a dose-dependent manner. 5-MT was employed in the dose range of $1\times10^{-8}\,\mathrm{g\cdot mL^{-1}}$ to $6.4\times10^{-5}\,\mathrm{g\cdot mL^{-1}}$. It was observed that 5-MT has a very potent ability to cause pigment aggregation. Also, the lowest dose previously mentioned caused a marked aggregating response,

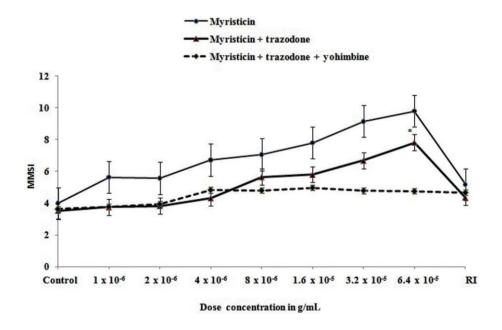


Figure 8

The dose-response curve for the effect of myristicin on the dorsal skin melanophores of *Hoplobatrachus tigerinus* alone and in the presence of trazodone $(2 \times 10^{-7} \text{ g·mL}^{-1})$. The synergistic blockage effect of trazodone $(2 \times 10^{-7} \text{ g·mL}^{-1})$ and yohimbine $(4 \times 10^{-7} \text{ g·mL}^{-1})$ is also shown. Vertical bars represent SEM. Note the blocking effects of yohimbine alone with the synergistic blockage shown by yohimbine and trazodone together. *P < 0.0004 signifies the level of significance.

in which the melanophores showed an instantaneous decrease in MMSI from 4.33 \pm 0.47 to 3.23 \pm 0.14 at $4\times10^{-5}~g\cdot mL^{-1}.$ The maximum aggregation was recorded at concentration $6.4\times10^{-5}~g\cdot mL^{-1},$ with the MMSI reduced to 0.66 \pm 0.14 (Figures 10 and 11).

However, although the antagonist L-lysine, employed at a dose of 2×10^{-7} g·mL⁻¹, only partially blocked the aggregating action of 5-MT, the strong aggregation caused by 5-MT on melanophores indicates that 5-HT₄ receptors are probably involved in substantial blanching of the skin (Figure 12).

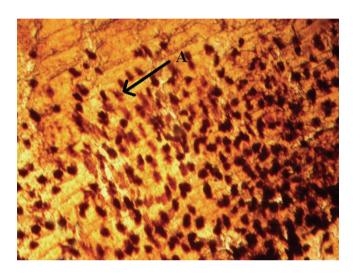


Figure 9 Aggregation caused by 1, 3 chlorophenyl biguanide 6.4 \times $10^{-5}\,g\cdot mL^{-1}.$ A, aggregation.

Discussion

The presence of distinctive classes of 5-HT receptors in the amphibian system has paved a way to decipher their significant involvement in the modulation of skin pigmentary responses. Also, 5-HT is an important mediator of bidirectional interactions between the neuroendocrine system and the skin (Nordlind *et al.*, 2008). Moreover, 5-HT may be involved in responses to tissue damage as a consequence of stress (Majno and Palade, 1961; Majno *et al.*, 1961) and injury (Coderre, 1993), which may induce 5-HT release (Kawahara *et al.*, 1993). The pigmentary responses of frog, caused by environmental stress or intrinsic factors, with the induction of

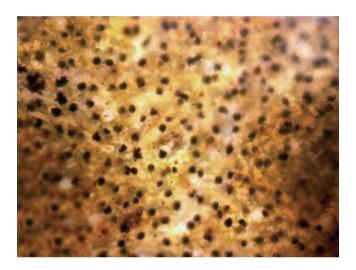


Figure 11 Aggregation caused by 5-MT $6.4 \times 10^{-5} \text{ g} \cdot \text{mL}^{-1}$.

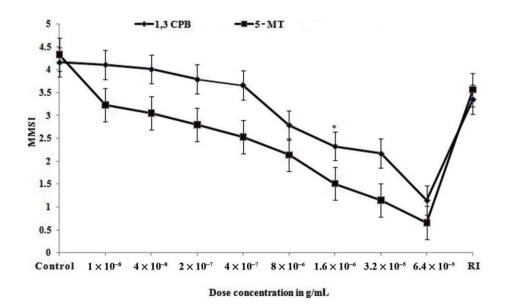


Figure 10

Dose-response curve for the aggregation induced by 1, 3 CPB and 5-MT of the dorsal skin melanophores of *Hoplobatrachus tigerinus*. Vertical bars represent SEM. *P < 0.0001 signifies the level of significance.

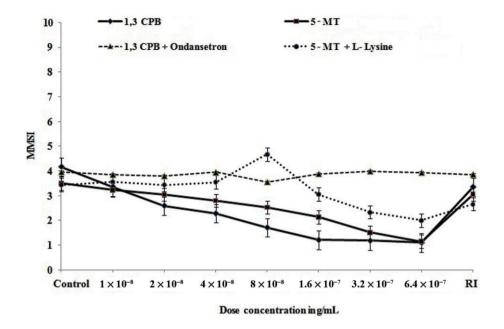


Figure 12
Dose-response curve for the aggregation induced by 1, 3 CPB and 5-MT of the dorsal skin melanophores of *Hoplobatrachus tigerinus* in the absence and presence of ondansetron $(4 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1})$ and L-lysine $(2 \times 10^{-7} \text{ g} \cdot \text{mL}^{-1})$, respectively.

5-HT release and subsequent darkening or lightening of skin would allow the animal better camouflage and defence. This finding holds significance from the evolutionary standpoint as well; skin cells, such as melanocytes, have been demonstrated to produce 5-HT (Slominski, 2009). Skin cells also express functionally active, membrane-bound receptors for 5-HT, as well as proteins that transport 5-HT. The interactions of 5-HT with various proteins determines the nature, magnitude and duration of the 5-HT response. Moreover, there is evidence that the 5-hydroxytrptaminergic system is fully expressed in mammalian skin (Slominski *et al.*, 2002a). Also, human skin and cultured skin-derived cells have the ability to transform L-tryptophan to 5-HT and to metabolize 5-HT to N acetyl-5-HT and melatonin (Slominski *et al.*, 2002c).

In our present study, the presence of 5-HT receptors in a commonly found amphibian has been demonstrated. The major unanswered questions about the evolution and characteristics of the 5-hydroxytrptaminergic system in lower vertebrates might explain their role in the complex systems of mammals and humans. As the discovery and putative involvement of numerous receptor subtypes have baffled the physiology of skin pigmentation, the knowledge of lower vertebrates would certainly add to the fragmentary picture of skin pigmentation with respect to 5-HT involvement in higher vertebrates.

The precise level of 5-HT in the amphibian system is unknown; however, there are enough data to support the fact that the levels of 5-HT fluctuate rhythmically depending upon the environmental conditions as well as internal factors (Firth and Heatwole, 1976; Firth *et al.*, 1979; Martin and Burggren, 1992). The results with 5-HT *per se* indicate that the affinity of 5-HT₁ receptor for 5-HT is sufficiently high for it to be stimulated by normal circulating levels of this ligand. Also, the interaction of sumatriptan with the 5-HT₁ receptor

seems to be of greater potency, with greater ligand efficacy as compared with the 5-HT₂ agonist myristicin, with MMSIs of 13.48 \pm 0.21 and 9.79 \pm 0.22, respectively. In contrast, the 5-HT₂ receptor is a low-affinity receptor activated only by high levels of 5-HT [as compared by the dose-response curves (Figure 6)]. This indicates the predominant presence of 5-HT₁ rather than 5-HT₂ receptors.

On the other hand, the presence of 5-HT₃ receptors has been indicated as well. Neurophysiological experiments have demonstrated the existence of 5-HT₃ receptors on c-fibres being activated by 5-HT (Christian *et al.*, 1989; Liang-Wu Fu and Longhurst, 1998). Also, it has been reported that c-fibres are present in frog skin, which get activated by numerous neuropeptides (Ciancio and Chang, 1992) and also by neurotransmitters like 5-HT (Fjällbrant and Iggo, 1961). In our study, we employed a potent and selective 5-HT₃ agonist, 1, 3 CPB, which elicited a response in the form of pigment aggregation and the complete blockage of this response by ondansetron strongly suggests the presence of 5-HT₃ receptors in the skin melanophores.

Interestingly, previously it was reported that 5-HT is present in frog skin and is involved in physiological functions in connection with defence and camouflage (Welsh and Zipf, 2005). Unfortunately, there are no data to reveal the exact location of 5-HT in the skin. 5-HT has been shown to cause pigment dispersion in *Xenopus* melanophores, initiated by an increase in intracellular cAMP resulting in the activation of PKA (Daniolos *et al.*, 1990), or PKC (Sugden and Rowe, 1992; Graminski *et al.*, 1993). On the other hand, a decrease in cAMP levels resulted into pigment aggregation. GPCRs have been linked to both cAMP (e.g. MC-l receptor, Potenza and Lerner, 1992) and PKC activation (e.g. endothelin-c receptor, Karne *et al.*, 1993) and are expressed in melanophores and stimulation of these GPCRs leads to pigment translocation. Our

present results are in agreement with the previously mentioned findings demonstrating the role of 5-HT receptors and their site of action on the melanophores together with their involvement in optimizing skin pigmentary responses.

Conclusion and future perspective

It is concluded that 5-HT, induces powerful, dose-dependent, physiologically significant, melanin dispersal effects in the isolated skin melanophores of *H. tigerinus*. This is the first report to demonstrate the presence of newly classified 5-HT receptors. The use of receptor-specific agonists and antagonists revealed that 5-HT receptors are involved in the skin pigmentary responses mediated by 5-HT. It is suggested that the stimulation of 5-HT₁ and 5-HT₂ receptors brings about pigment darkening, whereas 5-HT₃ receptor stimulation results in blanching of the skin. 5-MT caused rapid pigment aggregation, but the presence of 5-HT₄ receptors could not be confirmed as L-lysine failed to completely block this aggregating action of 5-MT. It is speculated that post-synaptic adrenoceptors are also involved in this aggregation response to 5-MT, but this needs clarification. Given the intriguing possibility that the 5-HT₄ receptor might represent the hitherto elusive reactivity that could directly contribute to melanin translocation within the cells could open novel perspectives for the physiology of skin pigmentation. Nonetheless, the pharmacological characterization of 5-HT receptors from our present study adds to the credence that 5-HT receptors are responsible for optimizing the pigmentary responses of animals with subsequent darkening and lightening of skin. The results we obtained strongly suggest that skin cells such as melanophores contain 5-HT receptors and add to our understanding of the evolutionary significance of this novel class of metabotropic receptors in the amphibian system.

Acknowledgement

The authors extend thanks to the secretary and principal of Saifia College of Science, Bhopal, for providing necessary facilities to carry out the present study.

Conflict of interest

The authors state no conflict of interest.

References

Ali SA, Peter J, Ali AS (1998). Histamine receptors in the skin melanophores of Indian bullfrog *Rana tigerina*. Comp Biochem Physiol A 121: 229–334.

Bennett GW, Balls M, Clothier RH, Marsden CA, Robinson G, Wemyss-holden GD (1981). Location and release of TRH and 5-HT from amphibian skin. Cell Biol Int Rep 5: 151–158.

Bennett GW, Marsden CA, Clothier RM, Waters AD, Balls M (1982). Coexistence of thyrotrophin releasing hormone and 5-hydroxytryptamine in the skin of *Xenopus laevis*. Comp Biochem Physiol 72C: 257–261.

Bhattacharya SK, Parikh AK, Das PK (1976). Effect of acetylcholine on melanophores of *Rana tigerina*. Experientia 32: 1039–1040.

Bockaert J, Claeysen S, Bécamel C, Dumuis A, Marin P (2006). Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326: 553–572.

Bohlen OV, Dermietzel H (2002). *Neurotransmitters and Neuromodulators. Handbook of Receptors and Biological Effects*, 2nd edn. Wiley VCH: Verlag GmbH, Weinheim.

Borisky GG, Rodionov VI (1999). Lessons from the melanophore. FASEB J 13: S221–S224.

Branchek TA (1995). 5-HT₄, 5-HT₆, 5-HT₇; molecular pharmacology of adenylate cyclase stimulating receptors. Semin Neurosci 6: 375–382.

Christian EP, Taylor GE, Weinreich D (1989). Serotonin increases excitability of rabbit C-fiber neurons by two distinct mechanisms. J Appl Physiol 67: 584–591.

Ciancio MJ, Chang EB (1992). Epithelial secretary response to inflammation. Ann NY Acad Sci 664: 210–221.

Coderre TJ (1993). The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol Neurobiol 7: 229–246.

Daniolos A, Lerner AB, Lerner MR (1990). Action of light on frog pigment cells in culture. Pigment Cell Res 3: 38–43.

Davey KG (1959). Serotonin and change of colour in frogs. Nature 183: 1271–1272.

Dicke U, Wallstein M, Gerhard R (1997). 5-HT-Like immunoreactivity in the brains of plethodontid and salamandrid salamanders (*Hydromantes italicus, Hydromantes genei, Plethodon jordani, Desmognathus ochrophaeus, Pleurodeles waltl*): an immunohistochemical and biocytin double-labelling study. Cell Tissue Res 287: 513–523.

Erspamer V (1992). The opioid peptides of the amphibian skin. Int J Dev Neurosci 10: 3–30.

Firth BT, Heatwole H (1976). Panting thresholds of lizards: the role of the pineal complex in panting responses in an agamid, *Amphibolurus muricatus*. Gen Comp Endocrinol 29: 388–401.

Firth BT, Kennaway DJ, Rozenbilds MAM (1979). Plasma melatonin in the scincid lizard, *Trachydosaurus rugosus*: diel rhythm, seasonality, and the effect of constant light and constant darkness. Gen Comp Endocr 37: 493–500.

Fjällbrant N, Iggo A (1961). The effect of histamine, 5-hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J Physiol 156: 578–590.

Fujii R (1993). Cytophysiology of fish chromatophores. Int Rev Cytol 143: 191–255.

Gele MV, Lambert J (2011). *Transport and Distribution of Melanosomes in Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological and Pathological Functions*. Wiley-VCH Verlag & Co.Publications: Germany.

Goodrich JT, Bernd P, Sherman D, Gershon MD (1980). Phylogeny of enteric serotonergic neurons. J Comp Neurol 190: 15–28.

Göthert M, Fink K, Frölich D, Likungu J, Molderings G, Schlicker E *et al.* (1995). Presynaptic 5-HT auto and heteroreceptors in the human central and peripheral nervous system. Behav Brain Res 73: 1–2, 89–92.

Graminski GF, Jayawickreme CK, Potenza MN, Lerner MR (1993). Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C. J Biol Chem 268: 5957–5964.

Hogben L, Slome D (1931). The pigmentary effector system. VI. The dual character of endocrine co-ordination in amphibian colour change. Proc R Soc B108: 10–53.

Hoyer D, Hannon JP, Martin GR (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554.

Johansson O, Liu P-Y, Bondesson L, Nordlind K, Olsson MJ, Lontz W *et al.* (1998). A serotonin-like immunoreactivity is present in human cutaneous melanocytes. J Invest Dermatol 111: 1010–1014.

Julius D (1991). Molecular biology of serotonin receptors. Annu Rev Neurosci 14: 335–360.

Kahr H, Fischer W (1957). Die Wirkung des 5-Oxytryptamines auf das Pigment system der Haut. Klin Wochschr 35: 41–44.

Karne S, Jayawickreme CK, Lerner MR (1993). Cloning and characterization of an endothelin-3 specific receptor (ET $_{\rm c}$ receptor) from *Xenopus laevis* dermal melanophores. J Biol Chem 268: 19126–19133.

Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M (1993). Psychological stress increases serotonin release in the rat amygdale and prefrontal cortex assessed by *in vivo* microdialysis. Neurosci Lett 162: 81–84.

Kramer B (1970). Histochemical demonstration of 5-hydroxytriptamine in poison glands of amphibian skin. Histochemie 24: 336–342.

Lerner AB, Case JD (1960). Melatonin. Fed Proc Am Soc Biol 19: 590–592.

Liang-Wu F, Longhurst JC (1998). Role of 5-HT₃ receptors in activation of abdominal sympathetic C fibre afferents during ischaemia in cats. J Physiol 509: 729–740.

Lillywhite HB (1971). Thermal modulation of cutaneous mucus discharge as a determinant of evaporative water loss in the frog, *Rana catesbeiana*. Z Vergl Physiol 73: 84–104.

Majno G, Palade GE (1961). Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biol Phys Biochem Cytol 11: 571–605.

Majno G, Schoefl GI, Palade G (1961). Studies on inflammation. II. The site of action of histamine and serotonin on the vascular tree: a topographic study. J Biophys Biochem Cytol 11: 607–626.

Maricq AV, Peterson AS, Brake AJ, Myera RM, Julius D (1991). Primary structure and functional expression of the 5HT3, receptor, a serotonin gated ion channel. Science 254: 432–437.

Martin EF, Burggren WW (1992). *Environmental Physiology of the Amphibians in Part 2: Exchange of Gases, Osmolytes, Water, and Heat, Thermoregulation, Hutchison VH, Dupre RK*. University of Chicago Press: Chicago.

Nordlind K, Azmitia EC, Slominski A (2008). The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17: 301–311.

Peroutka SJ (1990). Receptor 'families' for 5-hydroxytryptamine. J Cardiovasc Pharmacol 16 (Suppl. 3): S8–S14.

Potenza MN, Lerner MR (1992). A rapid quantitative bioassay for evaluating the effects of ligands upon receptors that modulate cAMP levels in a melanophore cell line. Pigment Cell Res 5: 372–378.

Potenza MN, Lerner MR (1994). Characterization of a serotonin receptor endogenous to frog melanophores. Naunyn Schmiedebergs Arch Pharmacol 349: 11–19.

Rollag MD, Adelman MR (1992). Colour change: a non-invasive measure of melatonin action. Anim Reprod Sci 30: 67–89.

Roseghini M, Erspamer GF, Severini C (1988). Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids. Comp Biochem 91: 281–286.

Roseghini M, Erspamer GF, Severini C, Simmaco M (1989). Biogenic amines and active peptides in extracts of the skin of thirty-two European amphibian species. Comp Biochem Physiol 94C: 455–460.

Ross MH, Romrell LJ, Kaye GI (1995). *Histology. A Text and Atlas*, 3rd edn. Williams & Wilkins: London, p. 191.

Seuwen K, Pouyssegur J (1990). Serotonin as a growth factor. Biochem Pharmacol 39: 985–990.

Slominski A (2009). Neuroendocrine activity of the melanocyte. Exp Dermatol 18: 760–763.

Slominski A, Pisarchik A, Semak I, Seatman T, Szczesniewski A, Wortsman J (2002a). Serotonergic system in hamster skin. J Invest Dermatol 119: 934–942.

Slominski A, Pisarchik A, Semak I, Seatman T, Wortsman J, Szczesniewski A *et al.* (2002b). Serotonergic and melatonergic systems are fully expressed in human skin. FASEB J 16: 896–898.

Slominski A, Semak I, Pisarchik A, Sweatman T, Szczesniewski A, Wortsman J (2002c). Conversion of L-Tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett 511: 102–106.

Slominski A, Pisarchik A, Johansson O, Jing C, Semak I, Slugocki G *et al.* (2003a). Tryptophan hydroxylase (TRH) expression in human skin cells. Biochem Biophys Acta 1639: 80–86.

Slominski A, Pisarchik A, Semak I, Seweatman T Wortsman J (2003b). Characterization of the serotonergic system in the C57BL/6 mouse skin. Eur J Biochem 270: 3335–3344.

Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003c). Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196: 144–153.

Slominski A, Desmond JT, Shibahara S, Wortman J (2004). Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84: 1155–1228.

Slominski A, Wortsman J, Tobin DJ (2005). Serotonergic and melatonergic systems: securing a place under the sun. FASEB J ,19: 176-194.

Sugden D, Rowe SJ (1992). Protein kinase C activation antagonizes melatonin-induced pigment aggregation in *Xenopus laevis* melanophores. J Cell Biol 119: 1515–1521.

Tatemoto K, Carlquist M, Mutt V (1982). Neuropeptide Y – a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659-660.

Teh MT, Sugden D (2001). An endogenous 5-HT $_7$ receptor mediates pigment granule dispersion in *Xenopus laevis* melanophores. Br J Pharmacol 132: 1799–1808.

Vande Veerdonk FCG (1960). Serotonin a melanocyte stimulating component in the dorsal skin secretion of *Xenopus laevis*. Nature 187: 948–949.

Welsh JH, Zipf JB (2005). 5-Hydroxytryptamine in frog's skin. J Cell Physiol 68: 25–34.